在实际数据中,存在大量的类别型特征,如性别、颜色、类别等,传统的算法通常需要在预处理中对这些特征进行独热编码(One-Hot Encoding)或标签编码(Label Encoding)。但这些方法存在一些问题,独热编码会增加数据的维度,导致模型训练时间变长;标签编码可能会引入不必要的顺序关系,影响模型的准确性。CatBoost 采用了一种独特的处理方式,称为 “Ordered Target Statistics”(有序目标统计),它通过对数据进行排序,利用数据的顺序信息来计算类别型特征的统计量,从而将特征有效地融入到模型中,避免了传统编码方式的弊端。